
NECDC UNCLASSIFIED July 2002

MILAGRO: A Parallel Implicit Monte Carlo Code
for 3-D Radiative Transfer (U)

T.M. Evans and T.J. Urbatsch
X–TM, MS D409, Los Alamos National Laboratory, Los Alamos, NM 87545

We have developed MILAGRO, a general-purpose Implicit Monte Carlo (IMC) code that
provides parallel, three-dimensional XYZ, one-group radiative transfer capability. It is writ-
ten in object-oriented C++ in a maintainable and extensible way. New items in MILAGRO
are parallel reproducibility, generic classes templated on Mesh Type (MT), C++/Fortran90
interfacing, and a parallel strategy. Verification of MILAGRO includes coding according to
Design by ContractTM (DBC) and successful completion of several test problems. The test
problems are variants of the Marshak Wave test problem, Su and Olson’s non-equilibrium
benchmark [1,2], and several simple and necessary, but not sufficient, test cases (U).

Keywords: Implicit Monte Carlo, radiation transfer, parallel computing, non-linear
transport, object-oriented scientific computing

Introduction

We have developed MILAGRO, a parallel, multidimensional, Implicit Monte Carlo (IMC)
code to solve radiative transfer problems. Specifically, as part of the Transport Methods
group in X-division (XTM), we endeavored to satisfy three goals with this effort. First, we
needed to provide a parallel, 3-D, IMC transport capability for radiation transport problems
for use on ASCI computer systems. Second, we needed a new, modern testbed code for
transport methods research. Finally, we desired to test new, modern concepts of code-
development, parallel scientific programming, and object-oriented and generic code design.
From the beginning, MILAGRO was designed with these objectives in mind.

The result is a parallel code written in C++ that is designed to be both maintainable and
extensible. Thus, we are assured that we can incorporate new features to satisfy both our
customers and research needs required for methods development. At present, MILAGRO
supports XYZ and XY orthogonal-structured meshes. The latter is primarily for debugging
and testing. MILAGRO runs parallel using both full mesh replication and full mesh domain
decomposition. Other plans, described later, are in development. MILAGRO is one-group
(grey), but, its design will support multi-group transport in the future.

This paper will describe MILAGRO and the JAYENNE program. We will review the
methodologies used to build MILAGRO. We will describe new methods that depart from
previous IMC packages. We conclude with our verification suite of test problems that show
the correctness of MILAGRO.

JAYENNE Program

The JAYENNE PROGRAM is the umbrella title for XTM’s IMC efforts. We have
developed a series of codes within JAYENNE leading up to MILAGRO. The first two test

1

UNCLASSIFIED

NECDC UNCLASSIFIED July 2002

Table 1: Capabilities and features of the MILAGRO and MILSTONE packages.

Package Host Geometry Mesh Type Parallelism
MILAGRO stand-alone XYZ, XY orthogonal-structured replication, domain-decomposition
MILSTONE RAGE XYZ orthogonal-AMR domain-decomposition

codes, MCTEST and IMCTEST, were component tests of our IMC library. Specifically,
we used these codes to verify our object-oriented design and to study C++ compilers. The
primary result of these efforts was our selection of the KAI KCC compiler [3]. KCC is the only
existing compiler that supports most features of the newly adopted ANSI C++ standard [4].
KCC is available on all platforms of interest to ASCI (IBM, SUN, SGI, LINUX, HP, DEC);
thus, portability is straightforward because the same compiler is used on different platforms.

At present, JAYENNE contains two major code efforts, MILAGRO and MILSTONE.
MILAGRO is our stand-alone IMC code. MILSTONE is an IMC package interfaced with
RAGE from the CRESTONE project. As described below, the core IMC components are
built in XTM’s DRACO system. Thus, MILAGRO and MILSTONE represent the inter-
faces to different hosts as summarized in Table 1. In other words, both MILAGRO and
MILSTONE use the same generic IMC libraries; the fundamental difference is the interface.
By using a core set of IMC components that are templated on different Mesh Types (MT),
we are able to provide IMC packages quickly to a variety of customers.

Methodologies

Fleck and Cummings Method. The equations we are solving are the equation of trans-
fer and the energy balance equation [5]. The one-group equation of transfer, neglecting
scattering, is

1

c

∂

∂t
I + Ω · ∇I = σ(x, T) [B(T) − I(x,Ω, t)] , (1)

where I ≡ I(x,Ω, t) is the specific intensity, B is the Planck function, σ is the opacity, and
T is the material temperature. Equation (1) is correct in the limit of local thermodynamic
equilibrium (LTE). The full description of the radiation transfer process requires coupling
to the material, whose energy balance is given by

∂

∂t
E(x, T) =

∫
4π

σ(x, T) [I(x,Ω′, t) − B(T)] dΩ′ , (2)

where E is the material energy density.
We use the IMC algorithm developed by Fleck and Cummings [6]. We will briefly go

through the derivation of their algorithm. First, we identify the equilibrium radiation energy
density, φ,

φ = aT 4 , (3)

where a is the radiation constant. We also note that, in equilibrium, I = B = c
4π

φ and,
therefore, ∫

B(T) dΩ = cφ(T) = caT 4 . (4)

2

UNCLASSIFIED

NECDC UNCLASSIFIED July 2002

The nonlinearity in the problem is captured with the variable β, which is defined as follows,

∂E

∂φ
=

1

β
. (5)

Using the preceding definitions in the radiation and material equations, Eqs. (1) and (2), we
obtain the following modified equations,

1

c

∂

∂t
I + Ω · ∇I = σ(x, T)

[c

4π
φ(T) − I(x,Ω, t)

]
, (6)

∂φ

∂t
= β

∫
4π

σ(x, T)
[
I(x,Ω′, t) − c

4π
φ(T)

]
dΩ′ . (7)

In the modified radiation equation, we want a time-centered expression for the radiation
energy,

φ̃ = αφn+1 + (1 − α)φn , (8)

where φn is the radiation energy density at the beginning of a timestep, φn+1 is the radi-
ation energy density at the end of a timestep, and α is a user-defined variable specifying
the implicitness: α = 0 is fully explicit and α = 1 is “fully” implicit. (Because the Fleck
and Cummings method employs quantities evaluated at the beginning of the timestep, it
is not fully implicit [7].) We substitute the time-centered radiation equation for φ on the
right-hand-side of the modified material equation, Eq. (7), and discretize in time by inte-
grating over a timestep, tn ≤ t ≤ tn+1. Next, we solve this equation for φn+1 and substitute
it back into our expression for the time-centered radiation energy density, Eq. (8). This new
expression for φ̃ is used in the modified radiation equation. Lastly, the time-centered radia-
tion intensity is replaced with the instantaneous radiation intensity producing the following
radiation equation:

1

c

∂I

∂t
+ Ω · ∇I + σI =

1

4π
(1 − f)σ

∫
IdΩ′ +

1

4π
fσcφn . (9)

Note that the total opacity has been divided into an effective absorption, fσ, and an effective
scattering, (1 − f)σ, using the Fleck factor, f ,

f =
1

1 + αβc∆t σ
. (10)

Finally, the material energy density is updated using conservation of energy,

En+1 = En + f

∫ ∫
σI dΩ dt − fcσ ∆t φn . (11)

We also note that the representation of the Planckian in the Fleck and Cummings method,

B ≡ φ̃

φn

Bn , (12)

is merely a scaling of the Planckian at the beginning of the timestep [7]. This scaling provides
numerical stability, but, in multi-group, does not account for any spectral change.

3

UNCLASSIFIED

NECDC UNCLASSIFIED July 2002

draco/

libds++.a(.so)
libc4.a(.so)
librng.a(.so)
libimc.a(.so)

milagro/

milagro.cc
libmilagro.a(.so)

sprng/

sprng.h
liblcg.a(.so)

MILAGRO

Figure 1: Relationship between DRACO and MILAGRO.

Object-Oriented/Generic Design. MILAGRO is written using an extensible, object-
oriented/generic design. This facilitates easy interfacing with multiple hosts. It also allows
for a high degree of extensibility. As stated earlier, MILAGRO is built using the DRACO
transport system. DRACO is a component-based architecture that provides class libraries
geared to numerical physics and transport applications. The guiding concept of DRACO
is parameterization on Mesh Types (MT). Thus, packages designed within DRACO simply
require MTs, provided by the host, to work in any framework.

Reusable IMC components are built within DRACO. The relationship between DRACO
and MILAGRO is illustrated in Fig. 1. DRACO provides a number of service libraries in-
cluding a communication package (C4), Smart Pointers, numerical containers, and a random
number package.

The random number package (RNG) in DRACO provides a set of wrappers used to
control the SPRNG [8] random number library. RNG provides a controller that is used to
generate random number objects with independent streams. The random number objects are
reference counted to allow copying and persistence for message-passing and restarts. These
RNG objects facilitate parallel reproducibility as described in the next section.

The IMC package provides five key classes: Source, Particle, Tally, Mat State, and Opac-
ity. Because these classes are templated on MT, the IMC package can theoretically run on
any mesh in any geometry. A large number of service classes are also provided including a
Communicator for particle message-passing and a Particle Buffer container that facilitates
particle persistence for communication and restarts. A generalized Transport class controls
the interaction of these units as illustrated in Fig. 2.

A final key component in the IMC packages is the use of Design by ContractTM1 (DBC) [9].
Assertions are added to each service in the IMC package to test initial conditions, execution,
and final output. Design-by-Contract really is a contract that delineates input to and output
from a function. Thus, both parties–the function and the caller–get what they expect. Use
of this technology has resulted in higher confidence in the code and reduced debug times.

The DBC assertions are controlled by a compile-time flag. Three levels of DBC support
can be switched on and off at compile time. Thus, production versions of the code do not
suffer a performance hit from DBC. In addition, an Insist function is provided that remains
on at all times. This function is useful for checking user input and single execution modules.

1“Design by Contract” is a trademark of Interactive Software Engineering.

4

UNCLASSIFIED

NECDC UNCLASSIFIED July 2002

imc_opacity:SP<Opacity<MT>>

member functions

imc_mesh:SP<MT>

Tally

:Particle

- random:Sprng

- trans_IMC()

- omega:vector<double>

+ get_edep()

MT

+ accumulate()

imc_mat:SP<Mat_State<MT>>

<<container>>

<<instantiates>>

<<instantiates>>

:Particle_Buffer<PT>::Census

- cell:int

- nsstot:int
- ncentot:int
- rcon:SP<Rnd_Control>
- material:SP<Mat_State<MT>>

- nvoltot:int
+ get_rn():Sprng
member functions

Rnd_Control

+ get_Source_Particle():Particle<MT>

MT

member functions

data

Source

+ spawn():Spring

member functions

data

+ transport()

- fraction:double
- time_left:double
- ew:double

- r:vector<double>

- trans_DDMC()

+ set_num()

member functions

MT

random:Sprng

+ ran():double

Figure 2: Interaction of primary IMC components.

Parallel Strategy. The natural way to parallelize a Monte Carlo calculation is to repeat
the mesh on multiple processors, split the particles up among those processors, and gather
their results at the end of calculation. We call this method “full replication” because the mesh
is fully replicated on each processor. Full replication is very efficient and gives almost perfect
speedup. Often, though, the problems we want to run are so large or so highly resolved that
we cannot fit the entire mesh on a single processor in a parallel, shared memory environment.
These problems require some sort of domain decomposition in which the mesh is split up
among the processors.

The SGI/Cray ASCI machines at Los Alamos are made up of distributed memory boxes,
each with several processors (64, 128, or 256) and an effective shared memory (with non-
uniform memory access). The parallelization schemes we present are for distributed memory,
but, when coupled with threads, they apply equally well to our machines at the box level.

In Fig. 3, we present three basic parallelization schemes. Without doubt, full replication
is the best way to parallelize Monte Carlo calculations of our type. However, when the entire
mesh will not fit on a single processor, the mesh must be broken up among the processors.
“Full Domain Decomposition” satisfies those memory constraints and is ideal for determinis-
tic methods, but it hinders Monte Carlo calculations too much. Specifically, communication
between processors must occur during the calculation and the work in any given cell is not
shared by multiple processors. The “General Domain Decomposition/Replication” scheme
satisfies memory constraints and allows for replication of cells and reduced in-calculation
communication. The key to this general scheme is to put as much of the mesh on a proces-
sor as possible and as necessary. The general scheme limits to full replication with increasing

5

UNCLASSIFIED

NECDC UNCLASSIFIED July 2002

processor capacity, and it limits to full domain decomposition with decreasing processor ca-
pacity. A disadvantage of the general domain decomposition/replication scheme is that the
number of in-calculation communication channels increases with the square of the number
of processors.

Full Domain Decomposition

Full Replication

General Domain Decomposition/Replication

processor
capacity

asLimits
to

Basic Parallelization Schemes

decreases Full DD

Full Repl. increases

Figure 3: The three basic parallelization schemes.

Our ultimate strategy involves a hierarchical utilization of the general basic scheme [10].
The idea is to break the number of available processors into subsets and represent the entire
mesh on each subset using the general basic scheme. Our two-step, hierarchical strategy
retains the advantages of the basic scheme, in that important cells are replicated on ev-
ery processor and in-calculation communication is reduced. Further, the poor scaling of
in-calculation communication is limited to a subset, not the entire set, of processors. A
schematic of our parallel strategy is in Fig. 4. Lawrence Livermore National Laboratory has
a similar strategy based on the full domain decomposition basic scheme.

Our parallel strategy is not fully implemented at this time, although much of the ground-
work is in place. Our parallel results in this paper are based on full replication.

New Methods

We have modified and adapted common IMC algorithms for use in MILAGRO. One
glaring shortcoming of old was that the results were not reproducible when run in paral-
lel. Successive runs on the same number of multiple processors gave statistically different
solutions, both of which were different from the single-processor solution. We feel that
reproducibility is essential and worth some trade-offs.

6

UNCLASSIFIED

NECDC UNCLASSIFIED July 2002

���
���
���
���

��
��
��
��

��
��
��
��

Higher cost of General DD/Replication

Localized full P speedup possible.

(work+comm) replicated S times.
 communication is limited to subset.

)()()()(

���
���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
�� ���

���
���
���
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

����
����

��

��

��
��
��
��

���
���
���
���
��
��
��
����
��
��
����
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Our Two-Step Scheme
Have P processors:

3) Limit communication to within set.

2) Replicate the subset S total times.

1) Perform General DD/R on P procs.

Divide into S=P/P sets of P processors:set set

set

Figure 4: Our parallel strategy for IMC.

Parallel Reproducibility. An important constraint on MILAGRO is that, for the same
input, it give exactly the same answer regardless of the number of processors used in the
calculation. This parallel reproducibility is invaluable for testing new methods, adding new
features, and debugging. Without it, each calculation performed on a different number of
processors must be statistically analyzed.

Reproducibility requires that a particle have no direct relation to the processor on which
it resides. A given particle should always encounter the same stream of random numbers.
We meet this requirement by controlling the source serially, by assigning each particle its
own random number object, and by combing each census particle in a self-dependent fashion.

MILAGRO has demonstrated parallel reproducibility in all of our test problems. We
expect that at some high number of processors, roundoff errors will ruin MILAGRO’s repro-
ducibility. We theorize two possible ways of avoiding roundoff errors. The first is to simply
keep the processors saturated with work, or, in other words, use no more than the optimal
number of processors. The second is to accumulate crucial summations in logarithmically
spaced bins, and, at the end of a timestep, sum the bins in a preordained order. The second
option would be quite involved, and we would rather avoid it.

New Census Comb. The purpose of combing the census particles is to control the overall
number of particles per timestep and to reduce the variance in particle energy-weights. A
commonly used census comb has been developed by E. Canfield [11]. In Canfield’s comb, the
desired number of census particles in a particular cell is determined and the census energy
divided equally among the new census particles. The attributes of the new census particles
are obtained as follows: The old census particles’ energy-weights are stacked end-to-end. A
“comb” is produced by stacking the new census particle energy-weights. The comb is lined

7

UNCLASSIFIED

NECDC UNCLASSIFIED July 2002

up next to the stack of old particle with a random offset. Wherever a comb tooth hits the old
stack, that old particle’s attributes are transferred to the new census particle. The comb is
shown in Figure 5. Census particles with a higher energy-weight are more likely to survive.

7ew3

Comb

Cell j

ew

desiredewdesiredew ewewdesired ewdesireddesired

ew5 ew64ew1 ew2 ew

Figure 5: Canfield’s census comb in a particular cell j.

Canfield’s census comb has the wonderful quality of exactly conserving energy. The
downside is that it is not reproducible in parallel. The comb’s random number stream is
not unique. Depending on how it is implemented, it may depend on the processor or it may
depend on the ordering of the census particle list. It could be made reproducible by ordering
the list, but, in our case, ordering is nearly impossible and certainly impractical.

The comb we use is similar to Splitting and Russian Roulette. A census particle is killed
or replicated according to the ratio of the desired energy-weight to the particle’s energy-
weight:

Rp = Int
(ewdesired

ewp

+ ξp

)
, (13)

where particle p with energy-weight ewp is replicated Rp times according to the desired
energy-weight, ewdesired, and a random number, ξp, from the random number stream of
particle p. This comb is fully reproducible in parallel. Unfortunately, it only statistically
conserves energy. Overall variance in energy-weights is reduced, but lower energy regions
that are inadequately sampled will be noisier. In a non-linear calculation, once energy is
lost–even statistically–in a linearized time step, that energy is lost forever. Our test problems
have shown no propagation of statistical error, only noisier low-energy regions. However, we
would recommend tending toward a larger number of particles with our comb.

Simplified Tilt. In the Fleck and Cummings IMC algorithm, the time-explicit portion of
the volume emission source can be quite sensitive to cell size. Therefore, the in-cell starting
location of these particles is sampled according to an assumed functional dependence within
the cell. Thus, more particles are sampled near the hotter edges of the cell.

The tilt we use is designed for our orthogonal cells and is much simpler than a tilt for
nonorthogonal RZ geometry. Each dimension is treated independently in a fashion similar to
Fleck and Canfield’s tilt in one-dimensional slab geometry [12]. The functional dependence
is a line running through the cell-centered T 4 with a slope based on opposite face values of
T 4. Face values of T 4 are averages of neighboring cell-center values. In summary, our tilt
is cell-centered, linear-discontinuous, first-order, and piecewise in dimension. Future work

8

UNCLASSIFIED

NECDC UNCLASSIFIED July 2002

includes investigating the effect of neglecting the radiation constant in the slope, i.e., using
T 4 instead of aT 4.

Verification and Test Problems

Verification is the ascertainment that our code is solving the equations we think it is
solving. We verify our code in two ways. First, we verify at the programming level by using
Design-by-ContractTM. Second, we verify in a more integral sense by comparing the code’s
results to analytic solutions of test problems.

The first test problems we run with new software is usually for debugging just as much as
it is for verification. These are simple, degenerate test problems that are necessary but not
sufficient. To test the particle tracking, we run purely streaming problems where the particles
do not interact with the material. To test the interaction between radiation and material,
we run a steady-state, infinite medium problem. We construct a three-dimensional XYZ box
with reflecting boundaries. The initial temperatures of the material and radiation are the
same, and they should stay the same. The surface source can be tested by replacing one of
the reflecting walls with a Planckian surface source at the same equilibrium temperature.
MILAGRO has successfully run these necessary, but not sufficient test problems.

More interesting time-dependent test problems are the Marshak Wave, with either a
constant incident flux or a delta function source, and the Su and Olson non-equilibrium
benchmark. We discuss the problem setups and results next.

Marshak Wave with Incident Flux. This Marshak Wave test problem considers a
constant, isotropic intensity incident on a slab. The material was purely absorbing with an
opacity of 100/T 3 cm2/g, a specific heat of 0.1 Jerks/g/keV, and a density of 3.0 g/cm3.
The incident intensity was a Planckian at 1 keV. We modeled the slab as a row of three-
dimensional blocks. The y- and z-directions had one cell of thickness 0.01 cm. The x-
direction had 200 cells, each of thickness 0.005 cm. The initial temperature for the system
was 1e-6 keV. We ran 10,000 particles per timestep, which was a constant 0.001 shake.

The MILAGRO results at 7.4 shakes are shown in Fig. 6. The analytic results were ob-
tained from a fourth order Runge-Kutta code written by Donald Shirk, LANL. The problem
was run on the SGI/Cray ASCI Blue machine using 10 processors and full replication. The
runtime is unavailable. There was, however, limited parallel speedup. The reason for the
poor parallel performance is that we construct the mesh every cycle, a generality foreshad-
owing the interfacing to an AMR code. Plus, the number of particles and the timestep were
both relatively small.

Marshak Wave with Delta Function Source. The second Marshak Wave variant is
again in slab geometry, but with a delta function source of 0.01 Jerks at x = 0 cm and
t = 0 shakes. Although testing the ability to model a delta function may be important, we
did not feel it was relevant to verifying our code. So, we ran the problem from t = 0.1 shake
using the analytic solution as our initial condition. The analytical data used to compare
output and to produce the source was produced by Mark Gray’s Analytical Test Suite2. The
slab material had an opacity of 1/T 3 cm2/g, a specific heat of 0.1 Jerks/g/keV, and a density

2The Analytical Test Suite is an XTM application used to verify radiation transport packages.

9

UNCLASSIFIED

NECDC UNCLASSIFIED July 2002

0 0.1 0.2 0.3 0.4 0.5
x (cm)

0

0.2

0.4

0.6

0.8

1

T
 (

ke
V

)

Marshak Wave
3−D Slab, 10 proc., 1e4 p/∆t, 7.4 sh, ∆t = 0.001 sh

Analytical (diffusion)
IMC

Figure 6: Marshak Wave with a constant, isotropic incident intensity.

of 3.0 g/cm3.
For this test problem only, we have results for both MILAGRO and MILSTONE. We

modeled the slab with two cells in each of the transverse directions and, in the x-direction,
200 for MILAGRO and 40 for MILSTONE. The cell size in the x-direction was 0.0025
cm. The cell size was supposed to be 0.0025 in the transverse directions, as well, but we
accidentally made it ten times larger. This mistake actually made the code run faster, since
there were fewer reflections. All boundaries were reflecting. We used 10,000 particles per
timestep, which was a constant 0.01 shake. The initial temperatures in non-active cells were
1 × 10−5 keV. We present the results in Fig. 7, where each IMC data point is the average
of the four cell values at that x location. MILAGRO and MILSTONE should give exactly
the same answer, except that the cells are ordered differently, and the number of cells along
the x-direction is different. The run-times were approximately 4.1 hours on an SGI Octane
workstation.

Su and Olson Non-Equilibrium Benchmark. The final test problem is that of Su and
Olson [13]. It is a cold, infinite, homogeneous slab with a finite radiation source that exists
for a finite amount of time. Of the purely absorbing case and the 50% scattering case, we

10

UNCLASSIFIED

NECDC UNCLASSIFIED July 2002

0.00 0.02 0.04 0.06 0.08 0.10
x (cm)

0.00

0.05

0.10

0.15

0.20
T

m
at
 (

ke
V

)

Marshak1d at 10 shakes

Analytic
Milstone
Milagro

opacity = 1/T
3

10,000 particles
tinit=0.1 sh with analytic data

2x2x40 cells for Milstone

2x2x200 cells for Milagro

Figure 7: Marshak Wave with delta function source of 0.01 Jerks at time = 0 and x = 0.

only present results for the latter so as to demonstrate isotropic scattering in MILAGRO.
Regardless, MILAGRO showed excellent agreement in both.

The analytic problem is scaled to a reference temperature, so some trial and error was
required to find appropriate physical regimes. Somewhat surprisingly, for unit density and
unit opacity, suitable initial temperatures were around 1 keV. Equalizing the initial radiation
and material energies resulted in an initial radiation temperature of 1.41 keV and an initial
material temperature of 1.00 keV. The specific heat varies with T 3

mat and, for our particular
initial conditions, was initially 0.05488 Jerks/g/keV. A suitable timestep was 0.00003̄. We
used 200 cells in the x-direction, each of thickness 0.1 cm, with reflecting boundary conditions
at x = 0. The isotropic radiation source, normalized to unity, is located in the region
0 < x < 0.5 cm and runs from time 0 to 0.03̄ shakes. Since the energy in the problem
increases while the source is on, we begin the problem with 5000 particles per timestep
and linearly ramp up to 50,000 particles at t = 0.3̄, or, equivalently, ct = 100, where
c = 300 cm/sh. In order to compare to published results, our results had to be scaled. We
multiplied the material energy by 375 and the radiation energy by four times that. The
radiation and material energy plots are shown in Figs. 8 and 9, respectively. Note the spikes
in the low material energy regions; they are probably noise due to our statistical comb. Note

11

UNCLASSIFIED

NECDC UNCLASSIFIED July 2002

also that the analytic solution has too few data points in some regions.

0 1 2 3 4
x, mfp

0

1

2

no
rm

al
iz

ed
 r

ad
ia

tio
n

en
er

gy

Milagro IMC on Su/Olson Transport Benchmark
1X1X200 cells, .01X.01X20 mfp, 5K−50K Particles, ca=0.5, Trad

0
=1.41, Tmat

0
=1, c∆t=.01

IMC: ct=0.1
IMC: ct=0.3
IMC: ct=1.0
IMC: ct=3.2
IMC: ct=10.0
IMC: ct=31.6
IMC: ct=100.0

Figure 8: Normalized radiation energy for Su/Olson non-equilibrium transport benchmark.

Verification efforts will continue, but those to date have successfully shown MILAGRO
to be verified.

Conclusion

We have developed a parallel, extensible, IMC code. It has full 3-D capabilities, is
reproducible in parallel, has demonstrated extensibility and maintainability, and has been
tested on a suite of radiation test problems. We have documented plans [10] for implementing
additional capabilities that should further test the validity of our object-oriented/generic
design.

Future enhancements to MILAGRO include:

1. implementation of full radiation-hydrodynamics;

2. completed parallel studies;

3. new geometries and mesh types including, AMR, RZ, degenerate hex and polyhedra;

12

UNCLASSIFIED

NECDC UNCLASSIFIED July 2002

1 10
x, mfp

10
−3

10
−2

10
−1

10
0

no
rm

al
iz

ed
 m

at
er

ia
l e

ne
rg

y

Milagro IMC on Su/Olson Transport Benchmark
1X1X200 cells, .01X.01X20 mfp, 5K−50K Particles, ca=0.5, Trad

0
=1.41, Tmat

0
=1, c∆t=.01

IMC: ct=0.1
IMC: ct=0.3
IMC: ct=1.0
IMC: ct=3.2
IMC: ct=10.0
IMC: ct=31.6
IMC: ct=100.0

Figure 9: Normalized material energy for Su/Olson non-equilibrium transport benchmark.

4. acceleration and speedup techniques including random walk [12] and Discrete Diffusion
Monte Carlo (DDMC) [14];

5. new IMC methods;

6. multi-group.

Given this list, MILAGRO can be seen as the starting point in a rigorous and extended IMC
effort.

References

[1] B. Su and G. L. Olson, “A benchmark for non-equilibrium radiative transfer in
an isotropically scattering medium,” Technical Report LA-UR-96-1799, Los Alamos
National Laboratory, 1996.

[2] B. Su and G. L. Olson, “Benchmark results for the non-equilibrium marshak diffusion
problem,” Technical Report LA-UR-96-488, Los Alamos National Laboratory, 1996.

13

UNCLASSIFIED

NECDC UNCLASSIFIED July 2002

[3] Kuck and Associates, KAI C++ Compiler. Champaign, IL, 3.2f ed., Oct. 1997.
c++support@kai.com.

[4] ISO/IEC, International Standard, “Programming languages-C++,” Tech. Rep.
14882, American National Standard Institute, New York, Sept. 1998.

[5] G. C. Pomraning, The Equations of Radiation Hydrodynamics. Oxford: Pergamon
Press, 1973.

[6] J. A. Fleck, Jr. and J. D. Cummings, “An implicit Monte Carlo scheme for calcu-
lating time and frequency dependent nonlinear radiation transport,” Journal of Com-
putational Physics, vol. 8, pp. 313–342, 1971.

[7] E. W. Larsen and B. Mercier, “Analysis of a Monte Carlo method for nonlinear
radiative transfer,” Journal of Computational Physics, vol. 71, pp. 50–64, 1987.

[8] D. Ceperley, M. Mascagni, and A. Srinivasan, “SPRNG: Scalable Parallel Ran-
dom Number Generators.” NCSA, University of Illinois, Urbana-Champaign, Nov. 1997.
www.ncsa.uiuc.edu/Apps/SPRNG.

[9] B. Meyer, Object-Oriented Sofware Construction. Upper Saddle River, NJ: Prentice
Hall, second ed., 1997.

[10] T. J. Urbatsch and T. M. Evans, “Strategy for parallel Implicit Monte Carlo,”
Research Note XTM-RN(U)-98-018, Los Alamos National Laboratory, May 1998. LA-
UR–98–2263.

[11] E. Canfield, “private communication.” Aug. 1998.

[12] J. A. Fleck, Jr. and E. H. Canfield, “A random walk procedure for improving
the computational efficiency of the Implicit Monte Carlo method for nonlinear radiation
transport,” Journal of Computational Physics, vol. 54, pp. 508–523, 1984.

[13] B. Su and G. L. Olson, “An analytical benchmark for non-equilibrium radiative
transfer in an isotropically scattering medium,” Annals of Nuclear Energy, vol. 24,
no. 13, pp. 1035–1055, 1997.

[14] T. Urbatsch and J. Morel, “Discrete Diffusion Monte Carlo,” Research Note XTM-
RN(U)-97–050, Los Alamos National Laboratory, Nov. 1997.

14

UNCLASSIFIED

